1,600 research outputs found

    3-DIMENSIONAL GEOMETRIC SURVEY AND STRUCTURAL MODELLING OF THE DOME OF PISA CATHEDRAL

    Get PDF
    This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature

    Squeezed light for advanced gravitational wave detectors and beyond

    Get PDF
    Recent experiments have demonstrated that squeezed vacuum states can be injected into gravitational wave detectors to improve their sensitivity at detection frequencies where they are quantum noise limited. Squeezed states could be employed in the next generation of more sensitive advanced detectors currently under construction, such as Advanced LIGO, to further push the limits of the observable gravitational wave Universe. To maximize the benefit from squeezing, environmentally induced disturbances such as back scattering and angular jitter need to be mitigated. We discuss the limitations of current squeezed vacuum sources in relation to the requirements imposed by future gravitational wave detectors, and show a design for squeezed light injection which overcomes these limitations

    A soft, synergy-based robotic glove for grasping assistance

    Get PDF
    This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test

    Immersive Virtual Environments and Wearable Haptic Devices in rehabilitation of children with neuromotor impairments: a single-blind randomized controlled crossover pilot study

    Get PDF
    Background: The past decade has seen the emergence of rehabilitation treatments using virtual reality. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. The aim of this study is to determine the efficacy of immersive Virtual Environments and weaRable hAptic devices (VERA) for rehabilitation of upper limb in children with Cerebral Palsy (CP) and Developmental Dyspraxia (DD). Methods: A two period cross-over design was adopted for determining the differences between the proposed therapy and a conventional treatment. Eight children were randomized into two groups: one group received the VERA treatment in the first period and the manual therapy in the second period, and viceversa for the other group. Children were assessed at the beginning and the end of each period through both the Nine Hole Peg Test (9-HPT, primary outcome) and Kinesiological Measurements obtained during the performing of similar tasks in a real setting scenario (secondary outcomes). Results: All subjects, not depending from which group they come from, significantly improved in both the performance of the 9-HPT and in the parameters of the kinesiological measurements (movement error and smoothness). No statistically significant differences have been found between the two groups. Conclusions: These findings suggest that immersive VE and wearable haptic devices is a viable alternative to conventional therapy for improving upper extremity function in children with neuromotor impairments. Trial registration ClinicalTrials, NCT03353623. Registered 27 November 2017-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03353623

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    Frequency-Dependent Squeezing for Advanced LIGO

    Get PDF
    The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50\sim 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let

    Mitoquinone (mitoQ) Exerts Antioxidant Effects Independent of Mitochondrial Targeted Effects in Phorbol-12-myristate-13-acetate (PMA) or N-formyl-L-methiony-L-leucyl-L-phenylalanine (fMLP) Stimulated Polymorphonuclear Leukocyte (PMN) Superoxide (SO) Release

    Get PDF
    MitoQ is a mitochondrial-targeted coenzyme Q antioxidant analog that dose-dependently restored cardiac function and reduced infarct size in isolated perfused rat hearts subjected to ischemia reperfusion (I/R). Moreover, mitoQ also dose-dependently attenuated PMA stimulated PMN superoxide (SO) release at the same concentration (10uM) as the cardioprotective dose. NADPH oxidase is the principle source of PMN SO release. We speculate that mitoQ may exert antioxidant effects independent of the mitochondria. Therefore, we hypothesized that inhibition of mitoQ on PMN-SO release will be similar as other coenzyme Q analogs: coenzyme Q1 and decylubiquinone without affecting cell viability. SO release was measured spectrophotometrically from isolated rat PMNs measured by the reduction of ferricytochrome c and were stimulated with 100nM PMA. The absorbance was measured at 550 nm up to 360sec. Positive control samples were given SO dismutase (SOD; 10ug/ml) which inhibited PMA induced SO release by \u3e90%. MitoQ significantly inhibited SO release by 56 + 3% (10uM, n=10 ,

    Studying a Masonry Sail Vault by Antonio da Sangallo the Elder in the Fortezza Vecchia in Livorno

    Get PDF
    The present contribution aims to illustrate some first results obtained from ongoing research on a 16th-century masonry sail vault in the Fortezza Vecchia (the Old Fortress) in Livorno (Italy). A multidisciplinary research is currently ongoing. The information collected by means of geometric surveys and experimental tests are being used as input data for the different analytical and numerical models expressly developed to study the vault’s structural response. The structural analysis has been performed using two analytical models set within the framework of limit analysis. The first considers the vault as a thin shell, and suitable sets of statically admissible stresses are built; the second model is a modern reinterpretation of Durand-Claye’s method for domes. As an additional term of comparison, numerical analyses are carried out by means of FE models. The study is still under development, and a first set of results has been obtained by limiting the analysis to vertical loads accounting for the self-weight of the vault and that of the overlying soil layer
    • …
    corecore